Total Synthesis of Ecteinascidin 743

Jinchun Chen, Xiaochuan Chen, Michèle Bois-Choussy, and Jieping Zhu*
Institut de Chimie des Substances Naturelles, CNRS, 91198 Gif-sur-Yvette Cedex, France
Received October 27, 2005; E-mail: zhu@icsn.cnrs-gif.fr

Ecteinascidin 743 (Et 743, 1, Scheme 1), isolated from the Caribbean tunicate Ecteinascidia turbinate, ${ }^{1}$ possesses potent cytotoxic activity against a variety of tumor cell lines in vitro and against several rodent tumors and human tumor xenografts in vivo. It is currently in phase II/III clinical trials in Europe and in the United States for ovarian, endometrium, and breast cancer as well as several types of sarcoma. ${ }^{2}$ The antiproliferative activity of Et 743 is greater than that of Taxol, camptothecin, adriamycin, mitomycin C , cisplatin, bleomycin, and etopside by 1-3 orders of magnitude. The complexity of molecular architecture, the remarkable biological activities, and the restricted natural availability (1.0 g from about 1.0 ton of tunicate) made it an attractive synthetic target for total synthesis. ${ }^{3}$ To date, two total syntheses have been accomplished by Corey et al. ${ }^{4}$ and Fukuyama et al. ${ }^{5}$ A semisynthesis from cyanosafracin B has been developed by Cuevas, Manzanares, and co-workers at PharmaMar. ${ }^{6}$ In addition, other synthetic approaches have been reported from a number of research groups. ${ }^{7}$ We report herein a highly convergent total synthesis of $\mathbf{1}$ that would potentially be amenable to large-scale production of this important antitumor agent. As shown in Scheme 1, Et 743 is retrosynthetically disconnected into five building blocks ($\mathbf{3}$ to 7) of almost equal size.

Synthesis of α-bromo- α-aryl substituted ethyl acetate $\mathbf{3}$ is depicted in Scheme 2. Masking the hydroxyl group of sesamol $\mathbf{8}$ by MOMCl followed by a sequence of regioselective lithiation/ boration/oxidation according to Fukuyama ${ }^{5 b}$ afforded phenol 9. Friedel-Crafts reaction of 9 with ethyl glyoxalate under the conditions we developed recently for the Pictet-Spengler reaction (LiCl, 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP)/toluene $=1: 4$, room temperature, rt$)^{8}$ furnished α-hydroxy ester $\mathbf{1 0}$ in excellent yield. Triflation of $\mathbf{1 0}$ with triflic anhydride under classic conditions provided a complex reaction mixture. However, using 4-nitrophenyltriflate as sulfonylating agent developed in this laboratory, ${ }^{9}$ we found that chemoselective trifluoromethanesulfonylation of phenol 10 proceeded smoothly to afford triflate 11. Palladium-catalyzed Suzuki-Miyaura cross-coupling ${ }^{10}$ between 11 and trimethyl boroxine provided $\mathbf{1 2}$ in 93% yield. Treatment of benzyl alcohol $\mathbf{1 2}$ with thionyl bromide in the presence of benzotriazole ${ }^{11}$ afforded the corresponding benzyl bromide $\mathbf{3}$ in excellent yield.

Synthesis of the D-E fragment 16 is shown in Scheme 3. Condensation of Garner's aldehyde (S)-4 ${ }^{12}$ with L-3-hydroxy-4-methoxy-5-methyl phenylalanol (5), which was prepared from 3-methyl catechol in eight steps, ${ }^{13}$ provided under optimized conditions ($\mathrm{AcOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$, molecular sieves $3 \AA$) the desired tetrahydroisoqinoline $\mathbf{1 3}$ in 84% yield as the only isolable product at the expense of other regio- (C-19 vs C-15, Et 743 numbering) and diastereoisomers. ${ }^{14,15}$ The NOEs observed between protons $\mathrm{H} 15 / \mathrm{C}_{16}-\mathrm{Me}, \mathrm{H} 15 / \mathrm{H} 14, \mathrm{H} 13 / \mathrm{H} 11$ of compound $\mathbf{1 4}$ supported both the regio- and stereochemistry assigned for compound 13. Interestingly, the stereochemistry at C_{11} was controlled solely by the absolute configuration of amino alcohol $\mathbf{5}$ since condensation of 5 and $(R)-\mathbf{4}$ gave also the $\mathrm{C}_{11}-\mathrm{C}_{13}$ cis diastereoisomer in excellent yield. It seems reasonable to assume that, under this circum-

Scheme 1

Scheme 2^{a}

${ }^{a}$ Reagents and conditions: (a) $\mathrm{MOMCl}, \mathrm{NaH}, \mathrm{Et}_{2} \mathrm{O} / \mathrm{DMF}, 0{ }^{\circ} \mathrm{C}$ to rt, 96%; (b) n - $\mathrm{BuLi}, \mathrm{B}(\mathrm{OMe})_{3}, \mathrm{THF}$ then $\mathrm{AcOH}, \mathrm{H}_{2} \mathrm{O}_{2}, 0{ }^{\circ} \mathrm{C}$ to rt, 95%; (c) $\mathrm{LiCl}, 3 \AA$ molecular sieves, HFIP/toluene, ethyl glyoxalate, rt, 97\%; (d) 4-nitrophenyltriflate, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}$, $\mathrm{rt}, 94 \%$; (e) trimethyl boroxine, $\mathrm{K}_{3} \mathrm{PO}_{4}$, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, dioxane, reflux, 93%; (f) SOBr_{2}, benzotriazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 91 \%$.

Scheme 3^{a}

${ }^{a}$ Reagents and conditions: (a) $\mathrm{AcOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$ (7:1), $3 \AA$ molecular sieves, rt, $20 \mathrm{~h}, 84 \%$; (b) 6 N HCl , in $\mathrm{MeOH}, \mathrm{rt}, 95 \%$; (c) AllocCl, $\mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 2 \mathrm{~h}, 88 \%$; (d) AllylBr, $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, \mathrm{rt}, 3 \mathrm{~h}, 86 \%$; (e) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 1 \mathrm{~h}, 92 \%$; (f) TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt , 72%.
stance, both C_{11} and C_{13} substituents adopted pseudoequatorial positions leading to the observed cis selectivity after ring closure.

Scheme $4^{\text {a }}$

Abstract

${ }^{a}$ Reagents and conditions: (a) TEA, MeCN, $0{ }^{\circ} \mathrm{C}, 91 \%$; (b) TBSCl, imidazole, DMF, rt, 97%; (c) $\mathrm{K}_{2} \mathrm{CO}_{3}$, MeOH , rt, 94%; (d) Dess-Martin reagent, rt, then TMSCN, $\mathrm{ZnCl}_{2}, \mathrm{rt}, 78 \%$; (e) $\mathrm{LiBH}_{4}, \mathrm{MeOH}, \mathrm{THF}, 0{ }^{\circ} \mathrm{C}, 80 \%$; (f) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 92 \%$; (g) $\mathrm{HF} \cdot \mathrm{H}_{2} \mathrm{O}$, MeCN, rt, 91%; (h) DessMartin reagent, rt, 93%; (i) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 95%; (j) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, \mathrm{rt}, 96 \%$; (k) EDCI, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 95%; (l) TFA, TFE, rt, then $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 77 \%$; (m) $n-\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{AcOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 87 \%$; (n) $\mathrm{NaBH}_{3} \mathrm{CN}, \mathrm{AcOH}, \mathrm{HCHO}, \mathrm{rt}, 96 \%$; (o) AcOH, $\mathrm{Zn}, \mathrm{rt}, 92 \%$; (p) 4-formyl-1-methylpyridinium benzenesulfonate, DBU , saturated aqueous oxalic acid, $\mathrm{DMF}-\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 53 \%$; (q) $\mathrm{NaOAc}, \mathrm{EtOH}, \mathrm{rt}, 97 \%$; (r) $\mathrm{AgNO} 3, \mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}$, rt, 92%.

This experimentally simple, yet highly efficient, synthesis of the D-E fragment is one of the key steps in our efforts toward the development of a practical synthesis of Et 743. Masking the secondary amine of $\mathbf{1 3}$ as N -allyloxycarbamate followed by chemoselective allylation of the phenol and acetylation of the remaining primary alcohol provided compound $\mathbf{1 5}$. Simultaneous removal of N-Boc and isopropylidene protective groups was realized under acidic conditions (TFA, rt) to afford amino alcohol 16 in 72% yield.

The accomplishment of the total synthesis of Et 743 is described in Scheme 4, starting from the assembly of two segments, 3 and 16. After much experimentation varying the solvents $(\mathrm{MeCN}$, trifluoroethanol, THF), bases (TEA, pyridine, DBU, $\mathrm{Ag}_{2} \mathrm{O}$), and temperatures (from $-45^{\circ} \mathrm{C}$ to rt), the coupling of $\mathbf{3}$ and $\mathbf{1 6}$ (1:1 ratio) was realized in MeCN in the presence of triethylamine (2.0 equiv) at $0{ }^{\circ} \mathrm{C}$. Under these conditions, two coupled products $\mathbf{1 8}$ and $\mathbf{1 7}$ were isolated in 68 and 23% yield, respectively. The observed diastereoselectivity in the N -alkylation of racemic bromide 3 could be tentatively explained by a $\mathrm{S}_{\mathrm{N}} 1$ mechanism via an orthoquinone methide intermediate. ${ }^{16}$ The absolute configuration of the

Scheme 5

newly created chiral center of the major stereoisomer was determined to be R by its transformation to the corresponding lactone (cf. Scheme 5, vide infra).

Compound $\mathbf{2 0}$ has all the requisite functionalities to build the polycyclic ring system of Et 743. The sequence of construction that we adopted in the present synthesis involved the formation of C-ring, B-ring, and then H-ring. Ring C was constructed onto the D-E segment as follows. Masking of the primary hydroxyl group of $\mathbf{1 8}$ as TBS ether and hydrolysis of the acetate under mild basic
conditions afforded compound 20. Oxidation of the hydroxyl group using Dess-Martin reagent ${ }^{17}$ followed by zinc chloride-catalyzed Strecker reaction provided amino nitrile 21 as one single stereoisomer, thus accomplishing the construction of the bicyclo[3.3.1] system with high efficacy.

The configuration of $\mathbf{2 1}$ was determined as follows. Treatment of an acetonitrile solution of $\mathbf{2 1}$ with $\mathrm{HF} \cdot \mathrm{H}_{2} \mathrm{O}$ effected a sequential O-desilylation and in situ lactonization leading to, after removal of N -Alloc and O -allyl protective groups, the rigid tetracyclic compound 19 (Scheme 5). The characteristic NOEs observed between $\mathrm{H} 1 / \mathrm{H} 21$ and $\mathrm{H} 21 / \mathrm{H} 14$ (Et 743 numbering) indicated that the configuration of $\mathbf{1 9}$, hence that of $\mathbf{2 1}$, is $(1 R, 3 R, 11 R, 13 S, 21 R)$.

With the absolute configuration of 21 being assigned, the synthesis was pursued by installation of ring B with a correct oxidation state at C_{4} (Scheme 4). Reduction of the ester function and subsequent acetylation of the resulting primary alcohol afforded compound 22. O-Desilylation followed by Dess-Martin oxidation of the C_{4} hydroxyl group afforded aldehyde 23. The Pomerantz-Fritsch-type cyclization ${ }^{7 d, e, 18}$ of $\mathbf{2 3}$ took place smoothly under acidic conditions (TFA in dichloromethane) to afford the A-B-C-D-E polyheterocycle 24 with concomitant removal of the phenolic MOM-protecting group. Although of no consequence, the cyclization is highly stereoselective ($\mathrm{dr}>20 / 1$) and the configuration at C_{4} of the major isomer was tentatively assigned as S based on the coupling constant (compound 25: $J_{\mathrm{H} 3-\mathrm{H} 4}=10.1 \mathrm{~Hz}$) and in analogy to the work done by Fukuyama and co-workers. ${ }^{5 b}$ Saponification of $\mathbf{2 4}$ followed by coupling of the resulting alcohol $\mathbf{2 5}$ with (R) -N-Troc-($S-4,4^{\prime}, 4^{\prime \prime}$-trimethoxyltrityl) Cys (6) under standard conditions afforded compound $\mathbf{2 6}$ in 94% yield. With the hexacyclic compound 26 in hand, a one-pot S-deprotection/cyclization to the 1,4 -bridged 10 -membered ring via formation of $\mathrm{C}-\mathrm{S}$ bond was sought next. ${ }^{5 b, 7 f, 8}$ Gratifyingly, by simply dissolving 26 in TFE containing 1% of TFA, the bridged macrocycle 27 was produced in 77% isolated yield after masking the phenol as the corresponding acetate. In this operationally simple experiment, a complex reaction sequence involving S-trityl deprotection, 1,4- β elimination leading to ortho-quinone methide and macrocyclization via an intramolecular Michael addition occurred in a highly ordered manner, to accomplish the key $\mathrm{C}-\mathrm{S}$ bond-forming process. Simultaneous removal of N -Alloc and O -allyl functions under Guibé's conditions, ${ }^{19}$ followed by reductive N -methylation, provided the key intermediate 28 in excellent overall yield.

Following Corey's protocol, compound 28 was converted to Et 743 in four steps. Removal of the N-Troc protective group under reductive conditions ${ }^{20}$ afforded the corresponding amino ester that was oxidized to ketoester 29. Pictet-Spengler reaction of 29 with 3-hydroxy-4-methoxyphenethylamine afforded ecteinascidin 770 (2) in 97% yield. ${ }^{\text {If }}$ Finally, treatment of Et 770 (2) with AgNO_{3} in $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ provided ecteinascidin 743 (1) in 92% yield. Synthetic Et 770 and Et 743 exhibited physical, spectroscopic, and spectrometric characteristics (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, IR, $[\alpha]_{\mathrm{D}}$, and HRMS) identical to those reported for the natural products.

In conclusion, a total synthesis of ecteinascidin 743 (1) has been achieved in 31 steps in the longest linear sequence and 1.7% overall yield from 3-methyl catechol (23 steps and 3% overall yield from the point of assembly). Notable features of our convergent approach include: (a) Rapid construction of $D-E$ segment by highly diastereoselective Pictet-Spengler condensation of Garner's aldehyde 4 with substituted phenylalanol 5, (b) diastereoselective N alkylation of racemic benzyl bromide $\mathbf{3}$ by enantiomerically pure amino alcohol 16, and (c) one-pot deprotection/cyclization of the S-protected precursor 26 leading to a 1,4-bridged 10-membered ring.

The synthesis is straightforward without using sophisticated reaction conditions and should potentially be amenable to large-scale production.

Acknowledgment. Financial support from CNRS and this institute is gratefully acknowledged.

Supporting Information Available: Experimental procedures and product characterization for all compounds synthesized. This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) (a) Wright, A. E.; Forleo, D. A.; Gunawardana, G. P.; Gunasekera, S. P.; Koehn, F. E.; McConnell, O. J. J. Org. Chem. 1990, 55, 4508-4512. (b) Rinehart, K. L.; Holt, T. G.; Fregeau, N. L.; Stroh, J. G.; Keifer, P. A.; Sun, F.; Li, L. H.; Martin, D. G. J. Org. Chem. 1990, 55, 4512-4515. (c) Rinehart, K. L.; Holt, T. G.; Fregeau, N. L.; Stroh, J. G.; Keifer, P. A.; Sun, F.; Li, L. H.; Martin, D. G. J. Org. Chem. 1991, 56, 1676; additions and corrections. (d) Sakai, R.; Rinehart, K. L.; Guan, Y.; Wang, A. H. J. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 11456-11460. (e) Sakai, R.; JaresErijman, E. A.; Manzanares, I.; Elipe, M. V. S.; Rinehart, K. L. J. Am. Chem. Soc. 1996, 118, 9017-9023. (f) Suwanborirux, K.; Charupant, K.; Amnuoypol, S.; Pummangura, S.; Kubo, A.; Saito, N. J. Nat. Prod. 2002, 65, 935-937.
(2) Rinehart, K. L. Med. Drug Rev. 2000, 1-27.
(3) For a recent comprehensive review in the field, see: Scott, J. D.; Williams, R. M. Chem. Rev. 2002, 102, 1669-1730.
(4) (a) Corey, E. J.; Gin, D. Y.; Kania, R. S. J. Am. Chem. Soc. 1996, 118, 9202-9203. (b) Martinez, E. J.; Corey, E. J. Org. Lett. 2000, 2, 993996.
(5) (a) Endo, A.; Kan, T.; Fukuyama, T. Synlett 1999, 1103-1105. (b) Endo, A.; Yanagisawa, A.; Abe, M.; Tohma, S.; Kan, T.; Fukuyama, T. J. Am. Chem. Soc. 2002, 124, 6552-6554.
(6) (a) Cuevas, C.; Pérez, M.; Martín, M. J.; Chicharro, J. L.; FernándezRivas, C.; Flores, M.; Francesch, A.; Gallego, P.; Zarzuelo, M.; De La Calle, F.; Gracía, J.; Polanco, C.; Rodríguez, I.; Manzanares, I. Org. Lett. 2000, 2, 2545-2548. (b) Menchaca, R.; Martínez, V.; Rodríguez, A.; Rodríguez, N.; Flores, M.; Gallego, P.; Manzanares, I.; Cuevas, C. J. Org. Chem. 2003, 68, 8859-8866.
(7) (a) Saito, N.; Tashiro, K.; Maru, Y.; Yamaguchi, K.; Kubo, A. J. Chem. Soc., Perkin Trans. 1 1997, 53-69. (b) Saito, N.; Kamayachi, H.; Tachi, M.; Kubo, A. Heterocycles 1999, 51, 9-12. (c) Saito, N.; Tachi, M.; Seki, R.; Kamayachi, H.; Kubo, A. Chem. Pharm. Bull. 2000, 48, 1549-1557. (d) Zhou, B.; Edmondson, S.; Padron, J.; Danishefsky, S. J. Tetrahedron Lett. 2000, 41, 2039-2042. (e) Zhou, B.; Guo, J.; Danishefsky, S. J. Tetrahedron Lett. 2000, 41, 2043-2046. (f) Zhou, B.; Guo, J.; Danishefsky, S. J. Org. Lett. 2002, 4, 43-46. (g) Herberich, B.; Kinugawa, M.; Vazquez, A.; Williams, R. M. Tetrahedron Lett. 2001, 42, 543-546. (h) Jin, W.; Williams, R. M. Tetrahedron Lett. 2003, 44, 4635-4639. (i) Jin, W.; Metobo, S.; Williams, R. M. Org. Lett. 2003, 5, 2095-2098. (j) Magnus, P.; Matthews, K. S.; Lynch, V. Org. Lett. 2003, 5, 2181-2184. (k) Tang, Y.-F.; Liu, Z.-Z.; Chen, S.-Z. Tetrahedron Lett. 2003, 44, 70917094.
(8) (a) De Paolis, M.; Chiaroni, A.; Zhu, J. J. Chem. Soc., Chem. Commun. 2003, 2896-2897. (b) Chen, X.; Chen, J.; De Paolis, M.; Zhu, J. J. Org. Chem. 2005, 70, 4397-4408.
(9) Neuville, L.; Bigot, A.; Tran Huu Dau, M. E.; Zhu, J. J. Org. Chem. 1999, 64, 7638-7642.
(10) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457-2483.
(11) Chaudhari, S. S.; Akamanchi, K. G. Synlett 1999, 1763-1765.
(12) (a) Garner, P.; Park, J. M. J. Org. Chem. 1987, 52, 2361-2364. (b) Garner, P.; Park, J. M. J. Org. Chem. 1988, 53, 2979-2984. (c) Garner, P.; Park, J. M.; Malecki, E. J. Org. Chem. 1988, 53, 4395-4398.
(13) De Paolis, M.; Chen, X.; Zhu, J. Synlett 2004, 729-731.
(14) For a general review of the Pictet-Spengler reaction, see: (a) Cox, E. D.; Cook, J. M. Chem. Rev. 1995, 95, 1797-1842. For 1,3-cis selective Pictet-Spengler reaction see: (b) Massiot, G.; Mulamba, T. J. Chem. Soc., Chem. Commun. 1983, 1147-1149. (c) Bailey, P. D.; Hollinshead, S. P.; McLay, N. R.; Morgan, K.; Palmer, S. J.; Prince, S. N.; Reynolds, C. D.; Wood, S. D. J. Chem. Soc., Perkin Trans. 1 1993, 431-439.
(15) For synthesis of (-)-saframycin by the directed condensation of suitably protected α-amino aldehyde precursors, see: (a) Myers, A. G.; Kung, D. W.; Zhong, B.; Movassaghi, M.; Kwon, S. J. Am. Chem. Soc. 1999, 121, 8401-8402. (b) Myers, A. G.; Kung, D. W. J. Am. Chem. Soc. 1999, 121, 10828-10829.
(16) For a recent comprehensive review in the field, see: Van De Water, R. W.; Pettus, T. R. R. Tetrahedron 2002, 58, 5367-5405.
(17) Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1982, 104, 902-903. (b) Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277-7287.
(18) Bobbitt, J. M.; Kiely, J. M.; Khanna, K. L.; Ebermann, R. J. Org. Chem. 1965, 30, 2247-2250.
(19) Guibé, F. Tetrahedron 1998, 54, 2967-3042.
(20) Woodward, R. B.; Heusler, K.; Gosteli, J.; Naegeli, P.; Oppolzer, W.; Ramage, R.; Ranganathan, S.; Vorbruggen, H. J. Am. Chem. Soc. 1966, 88, 852-853.
JA0571794

